专业高精密PCB电路板研发生产厂家

微波电路板·高频板·高速电路板·双面多层板·HDI电路板·软硬结合板

报价/技术支持·电话:0755-23200081邮箱:sales@ipcb.cn

微波高频

微波高频

微波射频用印制板的选材和无源互调
2020-10-28
浏览次数:927
分享到:

随着无线通讯和宽带网络的发展,PCB已不再简简单单是在一些绝缘的基材上面布上金属导线,实现互联。在许许多多的情况下,基材和金属导体已经成为功能元件的一部分。尤其是在射频应用中,元件与基材相互作用,从而,PCB的设计和制造越来越对产品的功能产生至关重要的影响。如左图1所示的微波高频板的一个典型部分,上面的导体都是一个个元件。

微波高频板

我们PCB制造者也更多的介入与设计相关的东西,尤其是到高频,高速信号传输中更是如此。同样设计者也必须对PCB制造工艺有深入的了解,才能综合生产出合格的,高性能的PCB。

我们从这期开始介绍一些大家经常接触的参数,由浅入深做一些技术探讨,希望能够加深设计与制造的沟通和交流。

1.介电常数

介电常数(Dk, ε,Er)决定了电信号在该介质中传播的速度。电信号传播的速度与介电常数平方根成反比。介电常数越低,信号传送速度越快。我们作个形象的比喻,就好想你在海滩上跑步,水深淹没了你的脚踝,水的粘度就是介电常数,水越粘,代表介电常数越高,你跑的也越慢。

介电常数并不是非常容易测量或定义,它不仅与介质的本身特性有关,还与测试方法,测试频率,测试前以及测试中的材料状态有关。介电常数也会随温度的变化而变化,有些特别的材料在开发中就考虑到温度的因素。湿度也是影响介电常数的一个重要因素,因为水的介电常数是70,很少的水分,会引起显著的变化。

介电常数

可以看出,对于高速、高频应用而言,最理想的材料是由铜箔包裹的空气介质,厚度允差在+/-0.00001"。作为材料开发,大家都在朝这个方向努力,如Arlon 专利开发的Foamclad非常适合基站天线的应用。但不是所有的设计都是介电常数越小越好,它往往根据一些实际的设计而定,一些要求体积很小的线路,常常需要高介电常数的材料,如Arlon的AR1000 用在小型化线路设计。有些设计如功放,常用介电常数2.55(如Arlon Diclad527, AD255等),或者介电常数3.5(如AD350,25N/FR等)。也有采用4.5介电常数的,(如AD450)主要从FR-4设计改为高频应用,而希望沿用以前设计。

介电常数除了直接影响信号的传输速度以外,还在很大程度上决定特性阻抗,在不同的部分使得特性阻抗匹配在微波通信线路板里尤为重要.如果出现阻抗不匹配的现象,阻抗不匹配也称为VSWR (驻波比)。

CTEr:由于介电常数随温度变化,而微波应用的材料又常常在室外,甚至太空环境,所以CTEr(Coefficenc of Thermal of Er,介电常数随温度的变化系数)也是一个关键的参数。一些陶瓷粉填充的PTFE能够有非常好的特性,如CLTE。

CLTE

2.损耗因子(Loss, loss tangent, Df, Dissipation factor)

除了介电常数,损耗因子是影响材料电气特性的重要参数。介电损耗也称损耗正切,损耗因子等,它是指信号在介质中丢失,也可以说是能量的损耗。这是因为高频信号(它们不停地在正负相位间变换)通过介质层时,介质中的分子试图根据这些电磁信号进行定向,虽然实际上,由于这些分子是交联的,不能真正定向。但频率的变化,使得分子不停地运动,产生大量的热,造成了能量的损耗。而有些材料,如PTFE的分子是非极性的,所以不会受电磁场的影响变化,损耗也就较小。同样,损耗因子也跟频率和测试方法有关,一般规律是在频率越高,损耗越大。

最直观的例子是传输中电能的消耗。如果电路设计损耗小。电池寿命可以明显增加。在接收信号时,采用的损耗的材料,天线对信号的敏感度增加,信号更清晰。

常用的FR4环氧树脂(Dk4.5)极性相对较强,在1GHz下,损耗约0.025,而PTFE基材(Dk2.17)在此条件下的损耗是0.0009。石英填充的聚酰亚胺与玻璃填充的聚酰亚胺相比,不仅介电常数低,而且损耗也较低,,因为硅的含量较纯。

下图为PTFE 的分子结构图,我们可以看到,它的结构非常对称,C-F键结合紧密,无极性基团。故随电磁场变化而摇摆的可能性很小,表现在电气特性上就是损耗小。

PTFE 的分子结构图

3. 热膨胀系数 (CTE)

热膨胀系数通常简写为CTE(Coeffecient Thermal Efficent),它是材料的重要热机械特性之一。指材料受热的情况下膨胀的情况。实际的材料膨胀是指体积变化,但由于基材的特性,我们往往分别考虑平面(X-, Y-)和垂直方向的膨胀(Z-)。

平面的热膨胀常常可以通过增强层材料加以控制,(如玻璃布,石英, Thermount ),而纵向的膨胀总是在玻璃转化温度以上难以控制。

平面的CTE对于安装高密度的封装至关重要,如果芯片(通常CTE在6-10ppm/C)安装在常规PCB上(CTE 18ppm/C),通过多次的热循环以后,可能造成焊点受力过度老化。而Z轴的CTE直接影响镀孔的可靠性,尤其对于多层板而言。

X

截屏,微信识别二维码

微信号:IPcb-cn

(点击微信号复制,添加好友)

  打开微信

微信号已复制,请打开微信添加咨询详情!