专业高精密PCB电路板研发生产厂家

微波电路板·高频板·高速电路板·双面多层板·HDI电路板·软硬结合板

报价/技术支持·电话:0755-23200081邮箱:sales@ipcb.cn

行业新闻

行业新闻

激光雷达技术的定义与分类
2021-11-17
浏览次数:1100
分享到:

到了21世纪,针对激光雷达技术的研究及科研成果层出不穷,极大地推动了激光雷达技术的发展,随着扫描,摄影、卫星定位及惯性导航系统的集成,利用不同的载体及多传感器的融合,直接获取星球表面三维点云数据,从而获得数字表面模型DSM,数字高程模型DEM,数字正射影像DOM及数字线画图DLG等,实现了激光雷达三维影像数据获得技术的突破。使得雷达技术得到了空前发展。如今激光雷达技术已广泛应用于社会发展及科学研究的各个领域,成为社会发展服务中不可或缺的高技术手段。

一,激光雷达的定义

激光雷达(LiDAR)是一种用于精确获得三维位置信息的传感器,好比人类的眼睛,可以确定物体的位置、大小、外部形貌甚至材质。它是通过激光测距技术探测环境信息的主动传感器的统称。它利用激光束探测目标,获得数据并生成精确的数字工程模型。激光雷达由发射系统、接收系统 、信息处理三部分组成。激光雷达的工作原理是利用可见和近红外光波(多为950nm波段附近的红外光)发射、反射和接收来探测物体。

二,激光雷达传感技术的特点

传统的雷达是以微波雷达毫米波雷达波段的电磁波为载波的雷达。激光雷达则是以激光作为载波,可以用振幅、频率和相位来搭载信息作为载体。因此,激光雷达有以下优于微波及毫米波的一些特点:

1、极高的分辨率
激光雷达工作于光学波段,频率比微波高2~3个数量级以上,因此,与微波雷达相比,激光雷达具有很高的距离分辨率、角分辨率和速度分辨率;

2、高抗干扰能力
激光波长短,可发射发散角非常小的激光束,多路径效应小(不会像微波或者毫米波一样产生多径效应),可探测低空或超低空目标;

3、丰富的信息量
可直接获取目标的距离、角度、反射强度、速度等信息,生成目标多维度图像;

4、不受光线影响
不受光线影响,激光扫描仪可全天候进行侦测任务。它只需发射自己的激光束,通过探测发射激光束的回波信号来获取目标信息。

三,激光雷达的分类

根据结构,激光雷达分为机械式激光雷达、固态激光雷达和混合固态激光雷达。

1、机械式激光雷达

机械激光雷达,是指其发射系统和接收系统存在宏观意义上的转动,也就是通过不断旋转发射头,将速度更快、发射更准的激光从“线”变成“面”,并在竖直方向上排布多束激光,形成多个面,达到动态扫描并动态接收信息的目的。因为带有机械旋转机构,所以机械激光雷达外表上最大的特点就是自己会转,个头较大。如今机械激光雷达技术相对成熟,但价格昂贵,暂时给主机厂量产的可能性较低;同时存在光路调试、装配复杂,生产周期漫长,机械旋转部件在行车环境下的可靠性不高,难以符合车规的严苛要求等不足。

2、混合固态激光雷达

机械式激光雷达在工作时发射系统和接收系统会一直360度地旋转,而混合固态激光雷达工作时,单从外观上是看不到旋转的,巧妙之处是将机械旋转部件做得更加小巧并深深地隐藏在外壳之中。业内普遍认为,混合固态激光雷达指用半导体“微动”器件(如MEMS扫描镜)来代替宏观机械式扫描器,在微观尺度上实现雷达发射端的激光扫描方式。MEMS扫描镜是一种硅基半导体元器件,属于固态电子元件;但是MEMS扫描镜并不“安分”,内部集成了“可动”的微型镜面;由此可见MEMS扫描镜兼具“固态”和“运动”两种属性,故称为“混合固态”。对于激光雷达来说,MEMS最大的价值在于:原本为了机械式激光雷达实现扫描,必须使激光发射器转动。而MEMS微机电系统可以直接在硅基芯片上集成体积十分精巧的微振镜,由可以旋转的微振镜来反射激光器的光线,从而实现扫描。这样一来,激光雷达本身不用再大幅度地进行旋转,可以有效降低整个系统在行车环境出现问题的几率。另外,主要部件运用芯片工艺生产之后,量产能力也得以大幅度提高,有利于降低激光雷达的成本,可以从上千乃至上万美元降低到数百美元。

3、固态激光雷达

相比于机械式激光雷达,固态激光雷达结构上最大的特点就是没有了旋转部件,个头相对较小。固态激光雷达的优点包括了:数据采集速度快,分辨率高,对于温度和振动的适应性强;通过波束控制,探测点(点云)可以任意分布,例如在高速公路主要扫描前方远处,对于侧面稀疏扫描但并不完全忽略,在十字路口加强侧面扫描。而只能匀速旋转的机械式激光雷达是无法执行这种精细操作的。从使用的技术上,固态激光雷达分为OPA固态激光雷达和Flash固态激光雷达。

(1)OPA固态激光雷达

OPA(optical phased array)光学相控阵技术。对军事有所了解的读者,应该会知道相控阵雷达,美海军宙斯盾舰上那一块蜂窝状的“板子”就是它。而光学相控阵使用的即是原理相同的技术。OPA运用相干原理(类似的是两圈水波相互叠加后,有的方向会相互抵消,有的会相互增强),采用多个光源组成阵列,通过控制各光源发光时间差,合成具有特定方向的主光束。然后再加以控制,主光束便可以实现对不同方向的扫描。相对于MEMS,这一技术的电子化更加彻底,它完全取消了机械结构,通过调节发射阵列中每个发射单元的相位差来改变激光的出射角度。因为没有任何机械结构,自然也没有旋转。所以相比传统机械式雷达,OPA固态激光雷达有扫描速度快、精度高、可控性好、体积小等优点。但也易形成旁瓣,影响光束作用距离和角分辨率,同时生产难度高。

(2)Flash固态激光雷达

Flash原本的意思为快闪。而Flash激光雷达的原理也是快闪,不像MEMS或OPA的方案会去进行扫描,而是短时间直接发射出一大片覆盖探测区域的激光,再以高度灵敏的接收器,来完成对环境周围图像的绘制。因此,Flash固态激光雷达属于非扫描式雷达,发射面阵光,是以2维或3维图像为重点输出内容的激光雷达。某种意义上,它有些类似于黑夜中的照相机,光源由自己主动发出。Flash固态雷达的一大优势是它能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦。不过,这种方式也有自己的缺陷,比如探测距离较近。这意味着Flash固态激光雷达没有“远视眼”,在实际使用中不适合远程探测,而业内专家坚信,全自动驾驶汽车上搭载的激光雷达至少一眼就得看到200到300米外的物体。其实Flash固态激光雷达的成本还是相对低,但基于3D Flash技术的固态激光雷达,在技术的可靠性方面还存在问题。

四,激光雷达传感技术的工作原理

激光雷达的工作原理与毫米波雷达非常相近,以激光作为信号源,由激光器发射出的脉冲激光,打到地面的树木,道路,桥梁和建筑物上引起散射,一部分光波会反射到激光雷达的接收器上,根据激光测距原理计算,就得到从激光雷达到目标点的距离。脉冲激光不断地扫描目标物,就可以得到目标物上全部目标点的数据,用此数据进行成像处理后,就可得到精确的三维立体图像。也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。
LiDAR系统一般包括;激光源或其它发射器,灵敏的光电探测器或其它接收器,同步和数据处理电子系统,运动控制设备或微机电系统(MEMS)扫描镜(二选一)。均是基于精确的激光扫描组件并可用于创建3D地图或收集近距离数据。

X

截屏,微信识别二维码

微信号:IPcb-cn

(点击微信号复制,添加好友)

  打开微信

微信号已复制,请打开微信添加咨询详情!